#escher

m-j-revenge@diaspora.psyco.fr
M.C. Escher - Reise in die Unendlichkeit

Treppen, die zugleich aufsteigen und hinabgehen. Vögel, die sich in Fische und wieder in Vögel verwandeln. Maurits Cornelis Eschers wunderbar unlogische Zeichnungen faszinieren auch heute noch besonders junge Leute. Die #Doku gibt Einblick in das faszinierende Verwirrspiel eines der bedeutendsten #Künstler des 20. Jahrhunderts.
https://www.arte.tv/de/videos/099732-000-A/m-c-escher-reise-in-die-unendlichkeit/
In der #Arte-Mediathek verfügbar bis zum 15.09.2024

#MCEscher #Escher #Kunst #Art #Arte #Mediathek #Dokumentation #YouTube #Video #Wikipedia ☮️

girlofthesea@diasporasocial.net

#dragon #escher #art
Oh. For the love of dragons! This magnificent dragon was brought to my attention by Isaac Kuo. Thank you, Isaac

M.C. Escher, Dragon, wood engraving, March 1952
- Escher wrote “this dragon is an obstinate beast, and in spite of his two-dimensions he persists in assuming that he has three”. Two slits in the paper from which the dragon is folded open up like kirigami, forming holes that make the dragon’s two-dimensional nature apparent. His head and neck pokes through one slit, and the tail through the other, with the head biting the tail in the manner of the ouroboros.
- In Gödel, Escher, Bach, Douglas Hofstadter interprets the dragon’s tail-bite as an image of self-reference, and his inability to become truly three-dimensional as a visual metaphor for a lack of transcendence, the inability to “jump out of the system”.The same image has also been called out in the scientific literature as a warning about what can happen when one attempts to describe four-dimensional space-time using higher dimensions.
- A copy of this print is in the collections of U.S. National Gallery of Art and the National Gallery of Canada.- Wikidedia

miguela@diaspora.psyco.fr

MC Escher (1898-1972) - Le deuxième jour de la création

"Toute la pièce - les quatre murs, le sol et le plafond -, le tout, bien que déformé, est comprimé dans ce petit cercle. Peu importe la façon dont vous vous tournez et retournez, vous ne pouvez échapper à ce point central situé entre vos yeux. Vous êtes invariablement au centre de votre univers."

#Art, #graphisme, #MC-Escher, #Escher

opi@diaspora-fr.org

📐 "L'étonnant puzzle fractal de von #Koch" (#Micmaths, 28/4/2022)
https://www.youtube.com/watch?v=8D_ThIqoJL8
"L'emboîtement du flocon de Koch avec lui-même semble magique ! Pourquoi ça marche ? Je vous présente une jolie démonstration de cette propriété."
📐 "Le flocon de Koch en 3D" (21/5/2022) 🧊😮
https://www.youtube.com/watch?v=AUO_H-OYzfM
📐 "Le pavage de Koch" ( #Thomaths, 22/4/2022) #Escher
https://www.youtube.com/watch?v=WZJzFmq9VFE
#géométrie #math

zeugma@diaspora.psyco.fr

#Art | The Weirdness of Escher

“Print Gallery” is a mind-bending image, where a man standing in a gallery looks at a picture of a seaport, in which is depicted the gallery in which he is standing. The perspective curves and distorts, folding back to the gallery where the man stands. Essentially the picture is recursive, and could potentially repeat infinitely. It almost makes you dizzy to look at, but that’s what makes it so interesting. His pictures are so thought-provoking, in that you have to concentrate just to make some kind of sense of them.

https://wordpress.com/read/blogs/138937819/posts/1365

#escher #gallery #lithograph #mathematics #recursive #tessellation #vuava #wordpress

Image: "Print Gallery," 1956, M.C. Escher