Fun ! But someone needs to tell them they can use other words than "however".

Einstein's theory of general relativity predicts neutron stars to be lighter than three times the mass of our Sun. However, the exact value of the maximum mass that a neutron star can have before collapsing into a black hole is unknown. “Considering electromagnetic observations and our present grasp of stellar evolution, there were expected to be very few black holes or neutron stars within the range of three to five solar masses. However, the mass of one of the newly discovered objects precisely aligns with this range,” Buonanno elaborates.

In recent years, astronomers have uncovered several objects whose masses potentially fit within this elusive gap. In the case of GW190814, LIGO and Virgo identified an object at the lower boundary of the mass spectrum. However, the compact object detected via the gravitational-wave signal GW230529 marks the first instance where its mass unequivocally falls within this gap... None of the previous candidates for objects in this mass range have been identified with the same certainty.

Scientists can only make an educated guess as to how the heavier of the compact objects – most likely a lightweight black hole – in the binary that emitted GW230529 was formed. It is too light to be the direct product of a supernova. It is possible – but unlikely – that it was formed during a supernova, where material initially ejected in the explosion falls back and causes the newly formed black hole to grow. It is even less likely that the black hole was formed in the merger of two neutron stars. An origin as a primordial black hole in the early days of the universe is also possible, but not very likely. Finally, the researchers cannot completely rule out the possibility that the heavier object is not a light black hole, but an extremely heavy neutron star.

#Science
#Space
#Astronomy
#Astrophysics

https://www.mpg.de/21778967/0404-grav-mysterious-object-in-the-gap-152520-x

There are no comments yet.