Im Weltraum kann man nicht einfach beliebig von einem Punkt zum anderen fliegen. Es gibt Bereiche, die – zumindest theoretisch – verboten sind. Zu ihnen führt das Jacobi-Integral.#Freistetter #Freistettersformelwelt #Dreikörper #Dreikörperproblem #Lagrange #Sonnensystem #Schwerkraft #Jacobiintegral #Mathematik #Astronomie
Der Schlüssel zu den interessanten Regionen des Sonnensystems
#astronomie
Viele sehnen den 21. Dezember herbei: die Wintersonnenwende, ab der die Tage wieder länger werden. Das stimmt zwar, aber nicht unbedingt so, wie viele Menschen vielleicht denken.#Wintersonnwende #Winter #Zeitgleichung #Perihel #InnereUhr #Sonne #Sonnensystem #Depression #Licht #Astronomie
Werden die Tage ab dem 21. Dezember tatsächlich bereits länger?
Ein besonders dicker Brummer von einem Schwarzen Loch existierte schon kurz nach dem Urknall.#SchwarzesLoch #SchwarzeLöcher #Wachstum #Galaxie #JWST #JamesWebb #James-Webb-Teleskop #FerneGalaxie #JungesUniversum #Astronomie
Ein schlafender Riese im jungen Universum
Das extrem massereiche Schwarze Loch im Zentrum unserer Galaxis wird von einem Doppelstern umrundet, der erste seiner Art, der in dieser Umgebung entdeckt wurde.#SchwarzesLoch #S-Sterne #Kosmologie #Sternentstehung #Doppelsterne #SpektroskopischeDoppelsterene #Astronomie
Unser Schwarzes Loch besitzt einen unerwarteten Doppelstern
Neue Beobachtungen des Exoplaneten stellen Astronomen vor ein Rätsel. Seine Oberfläche passt nicht zu dem, was man erwarten würde. Das lässt zwei unterschiedliche Schlüsse zu.#Exoplaneten #TRAPPIST-1b #TRAPPIST-1 #AtmosphäreZwergsterne #Planetensysteme #JWST #HabitableZone #MPIA #Astronomie
Hat dieser Exoplanet doch eine Atmosphäre?
Seit mehr als 30 Jahren fotografiert das Weltraumteleskop Hubble die vier Gasplaneten Jupiter, Saturn, Uranus und Neptun.#WeltraumteleskopHubble #Gasriesen #Jupiter #Saturn #Uranus #Neptun #Sonnensystem #Astronomie
Weltraumteleskop Hubble: Die Gasriesen im Visier
Nur selten können wir eine Bedeckung des Mars durch den Mond beobachten. Am 18. Dezember 2024 ist es wieder so weit: Der Rote Planet verschwindet am hellen Rand des Erdtrabanten.#Himmelsbeobachtung #Fernglas #Mond #Mars #Bedeckung #Astronomie
Der Mond bedeckt den Roten Planeten
In der heutigen Folge der Sternengeschichten geht es um die »Strömgren-Sphäre«. Sie handelt von der Entstehung und Entwicklung von Galaxien und von den ersten Sternen im Universum. 🎙️#Strömgren-Sphäre #Sternengeschichten #Sterne #Galaxie #Universum #Wasserstoff #Astronomie
Sternengeschichten: Die Strömgren-Sphäre und die ersten Sterne
die sternengeschichten als transkript: folge 629.
ich finde es super, dass ich hier ganz normal einen rss-feed in meine hubzilla-time ziehen kann ... :-)
#wissenschaft #astronomie #podcast #FlorianFreistetter
Astrodicticum Simplex wrote the following post Fri, 13 Dec 2024 08:00:21 +0100
Sternengeschichten Folge 629: Die Strömgren-Sphäre und die ersten Sterne
Das ist die Transkription einer Folge meines Sternengeschichten-Podcasts. Die Folge gibt es auch als MP3-Download und YouTube-Video. Und den ganzen Podcast findet ihr auch bei Spotify. Mehr Informationen: [Podcast-Feed][Apple]Spotify][Facebook][Twitter] Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal, Patreon oder Steady. Sternengeschichten Folge 629: Die Strömgren-Sphäre und die ersten Sterne In der […]View articleView summarySternengeschichten Folge 629: Die Strömgren-Sphäre und die ersten Sterne
Das ist die Transkription einer Folge meines Sternengeschichten-Podcasts. Die Folge gibt es auch als MP3-Download und YouTube-Video. Und den ganzen Podcast findet ihr auch bei Spotify.
Mehr Informationen: [Podcast-Feed][Apple]Spotify][Facebook][Twitter]
Wer den Podcast finanziell unterstützen möchte, kann das hier tun: Mit PayPal, Patreon oder Steady.---
Sternengeschichten Folge 629: Die Strömgren-Sphäre und die ersten Sterne
In der heutigen Folge der Sternengeschichten geht es um die „Strömgren-Sphäre“ und man kann sich auf jeden Fall schon mal denken, dass es um irgendwas kugelförmiges gehen wird. Was auch stimmt, aber die Geschichte der Strömgren-Sphäre handelt vor allem davon, wie Sterne entstehen und ihre Umgebung beeinflussen. Sie handelt von der Entstehung und Entwicklung von Galaxien und von den ersten Sternen im Universum.
Fangen wir aber am besten mal damit an zu klären, was ein Strömgren ist. In diesem Fall ist es kein was, sondern ein wer, nämlich der dänische Astronom Bengt Strömgren. Über ihn gäbe es viel zu erzählen, aber ich beschränke mich auf das, was er 1939 in einer Arbeit mit dem Titel „The Physical State of Interstellar Hydrogen“ geschrieben hat, was auf deutsch so viel heißt wie „Der physikalische Zustand des interstellaren Wasserstoffs“. Darin bezieht sich Strömgren auf eine Arbeit aus dem Jahr zuvor. Da hatten die amerikanischen Astronomen Otto Struve und Chris Elvey diverse kosmische Nebel beobachtet, in denen sehr viel ionisierter Wasserstoff zu finden war. Und um zu verstehen, warum das interessant ist, müssen wir uns nochmal erinnern, was es bedeutet, wenn Wasserstoff – oder sonst irgendwas – „ionisiert“ ist. Aber keine Sorge, das ist schnell erledigt: Wasserstoff ist ein Atom, mit einem Kern aus einem Proton. Und in der Atomhülle hat der Wasserstoff ein Elektron. Fertig – Wasserstoff ist simpel; andere Atome haben mehr Protonen im Kern und mehr Elektronen in der Hülle, aber der Punkt ist: Die Elektronen aus der Hülle eines Atoms können entfernt werden und wenn das der Fall ist, dann ist das Atom ionisiert. Ionisierter Wasserstoff ist also ein Wasserstoffatom, bei dem das Elektron aus der Hülle entfernt wurde und nur noch der Atomkern übrig ist. Oder anders gesagt: Das einzelne Proton.
Ok, was heißt das jetzt alles. Wir wissen, dass Wasserstoff das häufigste Element des Universums ist. Es ist ja auch das einfachste und es braucht nicht viel, damit es entsteht. Drum war es auch schon kurz nach dem Urknall da; fast drei Viertel der damals entstandenen Materie waren Wasserstoff und auch heute noch macht Wasserstoff die überwiegende Mehrheit der Atome im Universum aus. Warum also beschäftigen sich ein paar Astronomen in den späten 1930er Jahren mit Wasserstoff, selbst wenn er ionisiert ist? Weil es Energie braucht, um Wasserstoff zu ionisieren. Energie gibt es im Weltall natürlich auch, die kommt unter anderem von der Strahlung der Sterne. Was Strömgren in seiner Arbeit getan hat, war folgendes: Er hat sich überlegt, wie dieser ionisierte Wasserstoff tatsächlich im Raum verteilt sein müsste, wenn man davon ausgeht, dass es die Strahlung der Sterne ist, die ihn ionisiert. Das geht nicht mit jeder beliebigen Strahlung, es braucht die richtige Energie und die steckt vor allem in der ultravioletten Strahlung der sehr heißen und großen Sterne; die mit den Spektralklassen O und B, wenn es jemand genau wissen will.
Wir haben also diese heißen Sterne, die vom üblichen interstellaren Medium umgeben sind, also dem Zeug, dass sich zwischen den Sternen befindet. Das ist natürlich auch weitestgehend Wasserstoff, aber in dem Fall neutraler Wasserstoff, oder halt einfach nur Wasserstoff, nicht ionisiert. Die energiereiche ultraviolette Strahlung der heißen Sterne kann diesen Wasserstoff jetzt ionisieren. Das heißt aber auch, dass da jetzt freie Elektronen durch die Gegend fliegen, die nicht mehr an ihre Atomkerne gebunden sind. Die können jetzt wieder von Wasserstoffatomkernen eingefangen werden – das nennt man „Rekombination“ – und dabei wird Energie abgestrahlt, in Form von Lichtteilchen, die jetzt aber weniger Energie haben und nicht in der Lage sind, Atome zu ionisieren. Strömgren hat sich das alles genau durchgerechnet: Wie weit entfernt von einem Stern gibt es noch genug energiereiche UV-Strahlung, um Atome zu ionisieren; wo fängt die Zone an, wo der Wasserstoff sich wieder ein Elektron einfängt, und so weiter. Und er ist dabei zu dem Schluss gekommen, dass das erstens logischerweise eine mehr oder weniger kreisförmige Region um den Stern herum sein muss, weil Sterne ihre Strahlung ja in alle Richtungen abgeben. Er ist aber auch zweitens darauf gekommen, dass die Grenze zwischen ionisierten und neutralen Wasserstoff relativ scharf sein muss. Der ionisierte Wasserstoff wird nicht irgendwie langsam immer weniger und weniger und es ist auch nicht so, dass da Bereiche mit ionisierten Wasserstoff sind, die sich mit neutralen Wasserstoff abwechseln. In der Nähe des Sterns wird Wasserstoff durch die starke Strahlung ständig ionisiert. Weiter draußen gibt es dann aber nicht mehr genug UV-Strahlung, weil die zum Teil schon von den Atomen weiter innen absorbiert worden sind. Dort werden die Atome dann entweder nicht mehr ionisiert oder schnappen sich dann gleich wieder eines der freien Elektronen. Noch weiter draußen wird dann gar nichts mehr ionisiert und, so die Rechnung von Strömgren, im Vergleich zur Ausdehnung der ionisierten Region ist diese Übergangszone sehr schmal. Man kann also durchaus von einer Blase beziehungsweise Sphäre aus ionisierten Wasserstoff sprechen, der diese Sterne umgibt und Strömgren hat auch eine Formel entwickelt, die die Größe dieser Sphäre in Abhängig der Strahlungsstärke des Sterns bestimmt. Die Strömgren-Sphären sind dabei durchaus groß; sehr viel größer als ein Stern. Bei den ganz heißen Sternen können sie einen Durchmesser von ungefähr 650 Lichtjahren haben; bei den kühlsten Sterne, die noch Strömgren-Sphären produzieren können, sind es immer noch um die 50 Lichtjahre.
Man kann sich solche Strömgren-Sphären auch anschauen. Ein prominentes Beispiel dafür ist der Rosettennebel. In seinem Zentrum befinden sich gleich ein ganzer Sternhaufen mit jungen und heißen Sterne und rundherum erkennt man deutlich die sphärischen Bereiche mit den ionisierten bzw. neutralen Wasserstoffatomen. Und man erkennt sie deswegen, weil das Licht, das bei der Rekombination der freien Elektronen von den dann wieder neutralen Wasserstoffatomen ausgestrahlt wird, eine ganz charakteristische Wellenlänge hat. Strömgren-Sphären können wir im Orion-Nebel sehen, im Adler-Nebel, und so weiter. Aber die Strömgren-Sphäre ist nicht einfach nur die theoretische Erklärung für ein paar schöne Bilder, die wir gemacht haben.
Wenn das interstellare Medium durch die Strahlung eines heißen Sterns beeinflusst wird und sich eine Strömgren-Sphäre bildet, dann hat das natürlich auch Auswirkungen auf die weitere Umgebung. Ioniziation und Rekombination und die ganze Strahlung die dabei aufgenommen und abgegeben wird, beeinflussen das interstellare Medium und können dafür sorgen, dass die Entstehung neuer Sterne leichter oder schwerer wird. Ist das Gas zum Beispiel zu heiß, dann bewegen sich die Teilchen zu schnell, als dass die Wolke die aus dem Gas besteht, in sich zusammenfallen und so einen neuen Stern bilden kann. Wenn eine Strömgren-Sphäre sich bildet und ausdehnt, kann sie das umgebende Material andererseits aber auch erst Recht quasi zusammenschieben und so neue Sternbildung auslösen.
Auf noch größeren Skalen betrachtet, können Strömgren-Sphären auch die Entwicklung ganzer Galaxien beeinflussen, je nachdem wie sie dort verteilt sind und damit zum Beispiel ganze Sternentstehungsregionen bilden. Die heißen Regionen aus ionisierten Wasserstoff lassen sich außerdem auch gut beobachtet, selbst aus der Ferne in anderen Galaxien. Damit können wir auch über enorme Distanzen hinweg die Sternentstehungsraten dieser Galaxien bestimmen und schauen, wo sich die Quellen der Ionisation, also die heißen Sterne befinden.
Die Strömgren-Sphären spielen auch eine wichtige Rolle, wenn man die Reionisierungsepoche des Universums verstehen will. Das ist eigentlich wieder eine ganz andere Geschichte und eine lange noch dazu, aber ganz kurz geht sie so: Zuerst gab es im Universum nur ionisierte Atome. Es war alles zu heiß, so dass die Elektronen sich nicht an die Atomkerne binden haben können. Erst knapp 400.000 Jahre nach dem Urknall hat das geklappt. Und erst da ist das Universum „durchsichtig“ geworden, soll heißen: Davor konnte sich das Licht nicht vernünftig ausbreiten, weil alles voll mit freien Elektronen war, die es dauernd abgelenkt haben und noch dazu war das Universum damals ja auch viel kleiner. Nachdem sich aber die Elektronen an die Atomkerne gebunden haben, war genug Platz für das Licht, aber es war immer noch dunkel, weil es ja keine Sterne gegeben hat. Die haben sich dann in den nächsten paar Dutzend bis Hundert Millionen Jahren gebildet und die ersten Sterne waren sehr große und sehr heiße Sterne. Sie haben also auch Strömgren-Sphären gebildet und den Wasserstoff um sich herum wieder ionisiert. Alle jungen Sternen im jungen Universum haben das getan; die Strömgren-Sphären haben sich quasi überlappt und – zusammen mit ein paar anderen Phänomenen auf die ich jetzt nicht eingehe – hat das dazu geführt, dass ein großer Teil des Wasserstoffs im Universum wieder reionisiert worden ist, so wie damals, als der junge Kosmos noch nicht durchsichtig war. Zum Glück hat sich das All aber in der Zwischenzeit weit genug ausgedehnt, es ist genug Platz für das Licht und wir können schauen, was es da alles zu sehen gibt.
2 Likes
Das AstroGeoPlänkel ist eine regelmäßige Sonderfolge, in der es um eure Fragen, Kommentare, Anmerkungen und Wünsche geht. 🎙️#Massensterben #Devon #Bäume #Parallaxe #Feedback #Astronomie #ErdeUmwelt
AstroGeo: Vom Devon zur Silbernase des Tycho Brahe
»Warum hat das Universum exakt die Eigenschaften, die wir beobachten?« – »Weil sonst kein Leben entstanden wäre.« Dieses Totschlagargument wollen zwei Physiker nun widerlegen.#Kosmologie #AnthropischesPrinzip #Axion #Dunklematerie #Quanten #Inflation #Astro #Astronomie #Physik
Ein Test für das anthropische Prinzip
Neue Computermodelle und wiederentdeckte Zeichnungen der Sonne von Johannes Kepler könnten noch offene Fragen zum wechselhaften Magnetfeld unseres Zentralsterns beantworten.#Sonnendynamo #Magnetfeld #Alpha-Omega-Dynamo #Alpha-Prozess #Omega-Prozess #Torsionsschwingungen #Kepler #JohannesKepler #Astronomie
Der Dynamo der Sonne – neue Antworten auf alte Fragen?
Im schwachen Glimmen einer jungen, weit entfernten Galaxie finden sich Hinweise, wie die ersten Galaxien entstanden sind.#Galaxie #Jung #JWST #Webb #FrühesUniversum #Astronomie
Ein galaktisches Glühwürmchen im frühen Universum
Folge vom 10.12.2024, diesmal mit sicherem Antimaterien-Transport, Nebra-Krimi und Fragen ans Bindegewebe. 🎙️#Antimaterie #Nebra #HimmelsscheibevonNebra #Nebra-Himmelsscheibe #Bindegewebe #Remfort #Wöhrl #Science #wissenschaft #Kultur #Astronomie #Medizin #Physik
Methodisch inkorrekt: Lieferdienst für Antimaterie
Donald Trump rekrutiert für seine zweite Amtszeit als US-Präsident eifrig Männer, die ambitionierte Pläne im All verfolgen. Welche Veränderungen wird das mit sich bringen?#Artemis #SLS #SpaceLaunchSystem #Artemis-Programm #BemannteRaumfahrt #NASA #Astronauten #Trägerraketen #SpaceX #BlueOrigin #Privatastronaut #JaredIsaacman #Astronomie
Ein Zukunftstrio für die Raumfahrt?
Was oft fälschlicherweise für ein Loch im Universum gehalten wird, ist tatsächlich eine dichte, undurchsichtige Wolke aus Staub - bis jetzt#Barnard68 #Bok-Kugeln #Astronomie #Universum #Staub #Galaxie #Stern
Was befindet sich im Inneren des dunkelsten Ortes unserer Galaxis?
Big Bang mon cul.
Astronomie : le télescope James-Webb détecte trois surprenantes galaxies ultramassives datant de l’enfance de l’Univers
Grâce à des données fournies par le télescope spatial James-Webb (JWST) de la Nasa, une équipe internationale a mis au jour trois galaxies ultramassives qui défient notre compréhension de la formation et de l’évolution de ces structures cosmiques.
One person like that
Im Rauschen von Beobachtungen mit dem James-Webb-Teleskop verstecken sich kleine Körper im Asteroidengürtel, rund 140 mit einem Durchmesser von dutzend Metern wurden entdeckt.#JWST #JamesWebbSpaceTelescope #Asteroiden #Asteroidengürtel #Kleinkörper #Sonnensystem #Planetenforschung #Tscheljabinsk #Meteorit #Einschlag #Astronomie
Asteroiden im Rauschen entdeckt
Wie ist das Leben auf der Erde entstanden? Und wie könnte dieser Prozess auf anderen Planeten ablaufen? Die wesentlichen Schritte von der nichtbelebten Materie bis zur Zelle.#Leben #Erde #Urerde #Ursprung #DNA #DNS #RNA #RNS #Zelle #Zellen #Molekül #Moleküle #OrganischeMoleküle #Exoplanet #Exoplaneten #Wasser #H2O #Kohlendioxid #CO2 #Ammoniak #Astronomie #Biologie
Von erdähnlichen Planeten zum Ursprung des Lebens
Wir gehen dem Ursprung des Lebens von der nichtbelebten Materie zur einfachen Zelle nach.#Leben #Erde #Urerde #Ursprung #DNA #DNS #RNA #RNS #Zelle #Zellen #Molekül #Moleküle #OrganischeMoleküle #Exoplanet #Exoplaneten #Wasser #H2O #Kohlendioxid #CO2 #Ammoniak #Astronomie #Biologie
Von erdähnlichen Planeten zum Ursprung des Lebens